Новое устройство сможет хранить энергию прямо на микросхемах
Открытие суперконденсаторов на кремнии указывает на то, что почти любое устройство на кристаллическом кремнии, включая фотоэлементы, помимо своих прямых функций, способно без увеличения толщины ещё и хранить электроэнергию.
«Если вы спросите специалистов о том, можно ли сделать суперконденсатор из кремния, они скажут вам, что это сумасшедшая идея, — говорит Кэри Пинт (Cary Pint) из Университета Вандербильта (США), возглавляющий разработку таких ионисторов. — В отличие от них, мы знаем, как это сделать».
Храня энергию не в ионах, как обычные аккумуляторы, а в электронах, суперконденсаторы разряжаются и заряжаются за минуты, а не часы, и работают миллионы циклов вместо тысяч.
Главный недостаток ионисторов — меньшую, чем у химических аккумуляторов, ёмкость — пытаются одолеть множеством способов, хотя в основном речь идёт об использовании графена и нанотрубок. Но чтобы поверхность обкладок таких конденсаторов могла хранить максимум электронов, она должна быть предельно неровной, состоящей из высоких наногребней и пор. Увы, в этом случае сборка такого наноматериала из графена очень трудна.
Для решения проблемы «матрицы» таких наноконструкций группа г-на Пинта обратилась к пористому кремнию — материалу с контролируемой и хорошо известной наноструктурой, изготавливаемому с помощью электрохимического травления поверхности кремниевых подложек. Так удалось создать исключительно пористую наноструктуру, проблемой которой оставалась лишь готовность кремния реагировать с электролитами суперконденсатора, то есть та слабость, которая, по словам Кэри Пинта, делает саму идею такого устройства безумной.
Во избежание подобных реакций разработчики покрыли пористую поверхность кремния углеродом, а затем нагрели до 600–700 °С. Если вы думаете, что учёные хотели покрыть кремний графеном, то ошибаетесь. Чтобы получить графен из карбида кремния, полуфабрикат нагревают до 1 400 °С и выше. Прямо скажем, итог эксперимента оказался неожиданным: на поверхности относительно слабо нагретого кремния с углеродным покрытием образовался слой графена толщиной в несколько нанометров.
Вот так случайно был открыт новый метод получения графеновых плёнок. И не только он: кремний оказался защищённым от химических реакций с электролитом, а полученные на этой основе суперконденсаторы показали ёмкость, значительно более высокую, чем продающиеся сегодня изделия.
Что это может дать, кроме собственно суперконденсаторов? Идея г-на Пинта в том, что сегодня кремниевые устройства часто недоиспользуются: для работы им нужна толщина в несколько раз меньше той, что они реально имеют. Так получается не потому, что кристаллический кремний дёшев (фактически он дорог), а потому что сделать кремниевую подложку нужной толщины очень сложно, и она, несмотря на меньший расход материала, выходит дороже, нежели более толстая, с толщиной, которая, в принципе, не нужна.
А это значит, что солнечные батареи и многие детали элементной базы компьютеров используются не на все сто. В то же время сравнительно простая процедура позволяет создать на их задней, нерабочей стороне накопитель энергии, способный практически мгновенно заряжаться и разряжаться. Хотя максимальная ёмкость для таких устройств ещё не достигнута, а ту, что есть, нарастить можно весьма значительно, даже сегодня фотоэлементы, хранящие энергию в собственной толще, и электроника, спокойно переживающая перерывы в питании, в промышленности могут, что называется, оторвать с руками.
Сейчас разработчики создают прототипы как раз таких солнечных батарей, которые предназначены для запасания энергии полуденного солнца и её отдачи в моменты пиковой вечерней нагрузки. Кроме того, в их планах — проверка возможности работы мобильных телефонов на накопителях, находящихся непосредственно на нефункциональной стороне их кремниевых микросхем. Такие аппараты не только смогут дольше действовать от одной зарядки, но и заметно быстрее заряжаться.