Новые технологии позволили создать «краску», которая не тускнеет и не выцветает со временем
Ученые разработали новую технологию, на базе которой в будущем можно будет сделать своего рода краску, которая никогда не потускнеет и не выцветет даже под воздействием прямых солнечных лучей. Цвет в данном случае получается при помощи наноструктур на поверхности, которые получили название «плазмонные пиксели».
Эти структуры представляют собой крошечные алюминиевыенаноантенны, на поверхности которых возникают колеблющиеся с определенной частотой облака свободных электронов, так называемые плазмоны. И частота колебаний плазмонов определяет частоту отражаемого поверхностью света и, следовательно, цвет данного пикселя.
Тимоти Д. Джеймс (Timothy D. James), Пол Мальвани (Paul Mulvaney) и Энн Робертс (Ann Roberts), ученые из университета Мельбурна, продемонстрировали новую структуру плазмонного пикселя, в которой успешно решены несколько основных критических проблем с которыми все время сталкиваются разработчики подобных технологий. Эти проблемы служат причиной ограничения количества возможных цветов, размеров изображения и определяют трудности в получении какого-либо определенного цвета.
Новые плазмонные пиксели имеют структуру, благодаря которой при их помощи можно получить более 2 тысяч цветов и оттенков. Кроме этого, при их помощи можно получить разрешающую способность, которая превышает предел разрешающей способности человеческого глаза. Для демонстрации всего этого ученые создали цветное изображение, размером в 1.5 сантиметра, что существенно превышает размер изображений созданных ранее при помощи похожих технологий. Кроме этого, ученые разработали программный алгоритм, позволяющий рассчитать структуру поверхности с плазмонными пикселями так, чтобы получить наилучшее качество и разрешающую способность создаваемого изображения.
Новые плазмонные пиксели представляют собой микромассивы из алюминиевых наноантенн, каждая из которых выборочно поглощает и отражает лишь свет с определенной длиной волны. Длина каждой наноантенны определяет цвет пикселя, а ширина промежутка между отдельными наноантеннами — насыщенность и яркость создаваемого цвета.
Следует отметить, что плазмонные наноструктуры уже используются достаточно широко в различного рода датчиках, источниках света и в фотогальванических элементах. К материалам, обеспечивающим наиболее сильный плазмонный эффект, относиться золото и серебро, но алюминий является наиболее подходящим материалом для массового производства с точки зрения его доступности и низкой стоимости.