Создан полностью оптический транзистор, пригодный для квантовых компьютеров
Оптические микросхемы и компьютеры требуют, чтобы фотоны, составляющие свет, каким-то образом могли влиять на поведение друг друга. В природе эти частицы избегают подобного: столкните два фотона в космосе — и они просто пройдут один через другой.
Удастся ли задействовать оптические транзисторы в квантовых компьютерах? (Иллюстрация Christine Daniloff.)
Теперь исследователи под руководством Владана Вулетича (Vladan Vuletić) из Массачусетского технологического института (США) попробовали создать оптический ключ, контролируемый единичным фотоном, что наконец-то позволило бы регулировать передачу света при помощи света. Иными словами, речь идёт о разработке полностью оптического аналога транзистора.
Когда ключ находится в положении «включено», луч света может пройти через оба его зеркала, а если он выключен, то вероятность такого прохождения — из-за использования обоих зеркал — снижается до 20%. Зеркала образуют то, что можно назвать оптическим резонатором, — и если бы зеркало было одно, то свет просто возвращался бы обратно.
С двумя зеркалами всё меняется. Хотя как частица фотон, казалось бы, должен останавливаться первым же зеркалом, как «волночастица», в своей, так сказать, волновой ипостаси, электромагнитное поле проникает в пространство между первым и вторым зеркалами. Если расстояние между ними тщательно откалибровано под определённую длину волны входящего фотона, то в этой резонаторной полости создаётся значительное электромагнитное поле, отменяющее поле, идущее назад от первого зеркала, и свет распространяется вперёд — несмотря на пару зеркал на своём пути.
В нынешнем эксперименте полость оптического резонатора была заполнена ультрахолодными атомами цезия, в норме не взаимодействующего с фотонами. Если же одиночный «затворный» фотон выстреливается в середину этой группы атомов под особым углом и затрагивает лишь один электрон всего одного атома, переводя его в более высокоэнергетическое состояние, то физические условия внутри оптического резонатора слегка меняются, позволяя блокировать дальнейшее распространение света по вышеописанному механизму через сам ключ.
Как видим, изготовленный в MIT оптический транзистор всё-таки заработал (хотя 20%...). Правда, не без издержек в виде необходимости охлаждения атомов цезия до температур, близких к абсолютному нулю. Это из минусов.
Но есть и плюсы. Если для обычных компьютеров оптические транзисторы просто снизят перегрев и одновременно энергопотребление, то описанная выше схема благодаря однофотонному вводу имеет некоторый потенциал и для квантовых компьютеров. Более того, г-н Вулетич полагает, что, используя преднамеренно созданные включения в оптоволокне, эффектов сходного рода можно добиться при более практичных температурах.
Отчёт об исследовании опубликовано в журнале Science.
Подготовлено по материалам MIT News.
Источник: Компьюлента
«125 лет любви к животным»: директор зоопарка рассказал о жизни, животных и людях (фото)
В центре Киева горел отель: эвакуировали 57 человек (видео)
Обледеневшие центральные улицы Николаева начали посыпать реагентами (видео)
В Николаевской и 19 областях проходит спецоперация по поиску уклонистов: 128 обысков, 110 подозреваемых
В комнатах +5: в Николаеве общежитию без отопления отключили свет - люди вышли протестовать
Николаев в плену у гололеда – городские власти демонстрируют полную беспомощность (фоторепортаж)
«З Україною в серці»: для николаевцев выступили ведущие артисты одесского театра (фото, видео)
Трое россиян сдались в плен украинскому роботизированному комплексу (видео)
Как выглядит рынок в Германии: сравнение цен в Баден-Бадене и Николаеве (видео)













