Чем опасен полет на Марс?

12.02.2014 в 23:42

О полёте на Марс человечество мечтало задолго до гагаринского подвига. Пионер германского и американского ракетостроения Вернер фон Браун полагал, что человек ступит на Красную планету уже в 1965 году. С тех пор назывались разные даты, и всегда они отстояли от текущего момента лет на двадцать. Минуло неприлично много времени, однако завтра так и не наступило. 

Отчасти это объясняется тем, что нет такого пункта назначения, как космос. Выход на земную орбиту, полёты на Луну или Марс — всё это очень разные мероприятия. Мы ещё в самом начале космической эры, и на первый план выходит задача построения кораблей, которые не развалятся при старте, — и она до сих пор далеко не всегда успешно решается. Путешествие на Марс заставляет специалистов ломать голову над проблемой иного порядка, поскольку это уже не спринт, а марафон, и фокус смещается с аппаратуры на человеческий организм. Даже такая, казалось бы, рутина, как невесомость, которая уже больше пятидесяти лет никого не удивляет, становится серьёзным препятствием. 

Чем опасен полет на Марс?

Хочется туда? (Изображение NASA / JPL-Caltech.)

Земная жизнь на протяжении трёх с половиной миллиардов лет эволюционировала при неизменной силе тяжести. Уберите гравитацию, и вы обнаружите, что у вас совсем другое тело — незнакомое, чужое. Прежде чем рассуждать об опасностях, которые несёт с собой космическое излучение во время полёта на Марс, давайте разберёмся сначала с этим, призывает в своей новой книге «Экстремальная медицина» (Extreme Medicine) Кевин Фонг, профессор Университетского колледжа Лондона (Великобритания) и специалист по космической медицине, работавший в том числе с НАСА. 

Пока мы ходим по земле, сила притяжения остаётся незаметной. Нам кажется совершенно естественным, что мы приклеены к поверхности Земли. Но стоит нам хотя бы повиснуть на турнике, не говоря уже о прыжках с парашютом, как гравитация немедленно начинает требовать к себе внимания. 

На самом деле всё наше тело — результат адаптации к этой силе. Без четырёхглавой мышцы бедра, ягодиц, икр, мышцы, выпрямляющей позвоночник, мы с вами сейчас не стояли бы прямо, а приняли бы позу эмбриона. Эти мышцы созданы постоянными упражнениями, которые мы совершаем ежедневно, не придавая этому значения. Вот почему плоть, составляющая основную часть бедра, а также расширяющая и укрепляющая колено, изнашивается раньше остального организма. В экспериментах, когда мышей отправляли в «космос», более трети массы четырёхглавой мышцы терялось всего за девять дней! 

Кости тоже продукт силы притяжения. Нам кажется, что скелет — это просто основа, на которую натянуты мышцы, или что-то вроде доспехов. Однако на микроскопическом уровне скелет — динамичная система, которая постоянно изменяется в зависимости от гравитации, стремясь защитить кость от растяжения. Отсутствие силы тяжести приводит к остеопорозу. А поскольку 99% нашего кальция хранится именно в костях, он, став ненужным, попадает в кровоток, вызывая новые проблемы, от запора и почечнокаменной болезни до психотической депрессии. 

На этом биологическая адаптация к силе тяжести не заканчивается. Когда мы встаём с кровати, сердцу (а это мышца) приходится преодолевать гравитацию, закачивая кровь в сонную артерию, ведущую к мозгу. Чем больше вы валяетесь на диване, тем труднее сердцу справляться с этой задачей. 

Далее, во внутреннем ухе расположена система акселерометров — отолиты и полукружные каналы. Своими данными она делится с глазами, сердцем, суставами и мышцами, и это тоже результат гравитации. Представьте, что мир вокруг вас тошнотворно покачивается: довести себя до такого состояния можно не только болезнью, наркотиками и ядами, но и попаданием в невесомость. 

Есть и другие неприятности, природа которых не вполне ясна: падает количество эритроцитов, провоцируя анемию, ухудшается иммунитет, замедляется затягивание ран, расстраивается сон. 

Наконец, нужно как-то решить вопрос с жизнью как таковой. За счёт чего экипаж будет жить в космосе почти три года? Производить кислород можно электролизом воды, но запасы этой драгоценной жидкости надо всё время восполнять. Другой вариант — выращивать пшеницу, которая не только даст нужное количество кислорода, но и удалит из воздуха углекислый газ, а также станет источником пропитания. Вот только какова вероятность того, что пшеница возьмёт и погибнет?

Третье предложение всерьёз обсуждалось на одном из симпозиумов Европейского космического агентства. Водоросли! С ними проще, чем с пшеницей, а в остальном они столь же выгодны во всех отношениях. Водоросли — источник белка, а питаться они будут естественными отходами самих космонавтов. 

И только в последнюю очередь г-н Фонг предлагает подумать о радиации. Уровень облучения на пути к Марсу оценивается в пределах нормы, но только в том случае, если не будет вспышки на Солнце. Оболочка космического корабля из свинца и прочих тяжёлых металлов не спасёт вояжёров от высокоэнергетических тяжёлых частиц. 

Но даже если удастся защититься от радиации и наладить жизнеобеспечение, всё равно придётся вернуться к невесомости. К счастью, специалисты это прекрасно понимают. Самый простой способ имитировать отсутствие гравитации — уложить человека в постель на продолжительное время. Из этих экспериментов выросла следующая идея: прописывать будущим космонавтам невесомость в небольших, но мощных дозах. НАСА уже проводило такие опыты, и первые результаты обнадёживали: сердце и мышцы удаётся защитить. Скорее всего, костям это тоже пойдёт на пользу, а вот внутреннее ухо нужно тренировать как-то иначе. 


Увы, все эти смелые мероприятия проводились до того, как бюджет НАСА резко сократили... 


Подготовлено по материалам Wired.


Источник: Компьюлента
Добавить комментарий
Комментарии доступны в наших Telegram и instagram.
Новости
Архив
Новости Отовсюду
Архив